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SUMMARY

The use of ILU(0) factorization as a preconditioner is quite frequent when solving linear systems of CFD
computations. This is because of its efficiency and moderate memory requirements. For a small number
of processors, this preconditioner, parallelized through coloring methods, shows little savings when
compared with a sequential one using adequate reordering of the unknowns. Level scheduling techniques
are applied to obtain the same preconditioning efficiency as in a sequential case, while taking advantage
of parallelism through block algorithms. Numerical results obtained from the parallel solution of the
compressible Navier–Stokes equations show that this technique gives interesting savings in computa-
tional times on a small number of processors of shared-memory computers. In addition, it does this while
keeping all the benefits of an ILU(0) factorization with an adequate reordering of the unknowns, and
without the loss of efficiency of factorization associated with a more scalable coloring strategy. Copyright
© 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The ability of solving large, sparse, unsymmetric, typically ill-conditioned linear systems
remains crucial for reducing the computational time of computational fluid dynamics (CFD)
problems. Direct methods were in the past preferred to iterative ones, because of their
predictability and reliability. The increase in size and in physical complexity of three-dimen-
sional models, however, makes direct methods prohibitively costly, both in terms of storage
and computation. Preconditioned iterative methods are, therefore, currently playing a major
role in these kind of problems and are widely used to accelerate the solvers of a variety of
discretized boundary value problems. The classical difficulties in developing general purpose
preconditioners are amplified for parallel computations, with parallelism usually achieved by
sacrificing efficiency. Thus, it is quite frequent to have scalable algorithms with good speed-ups
in a parallel environment, but with little savings when compared with more powerful
sequential methods.

Although the behavior of classical preconditioners is not fully predictable in general,
approaches such as the well-known ILU(0) factorization are frequently used because of their
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simplicity and reasonable memory requirements. In this case, the preconditioner is a product
of two sparse triangular matrices L and U, where the sparse structure of L+U is chosen to
be identical to that of the system matrix. This work presents some results using this type of
preconditioner on commonly available parallel machines or networks of workstations, with
2–8 processors sharing a fairly large aggregate memory. Although the incomplete Gaussian
factorization is essentially a sequential preconditioner, some parallelism could be achieved both
during the factorization and the backward–forward solution step without modifying its
beha6ior. In particular, some reordering strategies can be used for breaking its sequential
nature [1–3]. If the lower and upper triangular parts of the system matrix could be put in a
block form, where the diagonal blocks are diagonal matrices, both the incomplete factorization
and the solution of each triangular factor could be done simultaneously inside each block of
equations.

In this work, level scheduling techniques are applied to the parallel solution of the
compressible Navier–Stokes equations, for a small number of processors in shared-memory
computers. The main advantage of these kinds of ordering is that the coloring does not modify
the preconditioner itself. The efficiency of the proposed technique depends on the matrix, and
no effort is done here to attempt to modify its structure. Instead, the initial ordering of
equations is supposed to be suitable to a good sequential ILU(0) factorization, giving a robust
sequential preconditioner, and additional savings are obtained using a small number of
processors.

The matrix A is supposed to be a sparse large-scale system of order N. If its zero–non-zero
structure is symmetric, as it is commonly the case for finite element methods, about half of the
preprocessing step can be reduced. In this case, a row and column reordering for the lower part
of A, where the diagonal blocks are diagonal matrices, is also an appropriate reordering for the
upper part of the system. Nevertheless, the symmetry is not a necessary condition here, and
this study can be applied to non-symmetric matrices as well. For the actual implementation of
methods presented here, the compressed sparse row (CSR) storage format was used to store
the non-zero coefficients of the matrix (see SPARSKIT2 [4] for details on sparse storage
schemes). However, the algorithms can be rewritten for other storage schemes. See [1] for
modifications to the compressed sparse column (CSC) or jagged diagonal (JD) storage
schemes. In the following sections, only lower triangular systems are considered most of the
time. The development for upper triangular systems is similar.

2. BLOCKING ALGORITHMS FOR SPARSE TRIANGULAR SYSTEMS

Given an N×N matrix A= (Aij) it is possible to define an induced directed graph G(A)=
�V, E�. The set V has N vertices {a1, . . . , aN} and E is a collection of ordered pairs of
elements of V such that �ai, aj��E if i" j and if Aij"0. An element �ai, aj��E is called an
edge of G(A), and an arrow goes from ai to aj in the graph. Reciprocally, given G=�V, E�,
a directed graph without loops, the structure of a matrix A= (Aij) could be associated with the
graph in the usual way: Aij"0 if and only if either i= j or �ai, aj��E. The simple directed
graph shown in Figure 1 will be used in the following to exemplify the strategies presented
here.

A ‘natural’ ordering of the unknowns respects the direction of the arrows. The numbered
graph (left) and the structure of the lower triangular matrix (right) associated with this
ordering are shown in Figure 2.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 995–1008 (1999)
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Figure 1. Example of a directed graph.

Let L be a sparse lower triangular matrix of order N. The forward substitution to solve the
system Lw=v can be written in a compact form:

wi=
1
lii

�
6i− %

jB i, lij"0

lijwj

�
, i=1, . . . , N. (1)

If L is dense, its coefficients are non-zero and each of the components w1, . . . , wi−1 must be
known to solve for wi. However, when L is sparse, only few of its coefficients are non-zero and
it may not be necessary to solve for all of the i−1 first components of w before solving for
wi. A set of contiguous values of the unknowns can be computed in parallel if they are
mutually independent in Lw=v, i.e. if in the associated graph the corresponding vertices are
independent. In graph theory, a partitioning of the vertices of a graph into sets of independent
vertices is called coloring. After coloring, the outer loop of the substitution can be parallelized
color by color. In general, parallelization benefits from color sets that are as large as possible.
Unfortunately, finding a coloring scheme that provides a minimum number of colors in an
arbitrary graph is an NP-complete problem.

Several techniques of coloring are currently used to create sets of independent vertices in
different kind of meshes, like the well-known red–black coloring for regular finite differences
meshes or simply greedy algorithms for general unstructured finite element grids. See [5] for
some coloring strategies well adapted to distributed-memory parallel computers. A multi-color-
ing algorithm applied to the graph of Figure 1 is shown in Figure 3, as well as its associated
lower triangular matrix.

In this example, colors are represented by different figures around numbers. Thus, the first
color is used for vertices numbered 1–4, the second one for vertices 5–8, and the last one for
vertices 9 and 10. Unfortunately, several arrows are re6ersed when compared with the initial
graph. This means that the ILU(0) factorization associated with this matrix is not the same
as for the initial ordering. As it is known for the sequential case [6,7], reordering of the
unknowns modifies the convergence rate of the preconditioned iterative methods [8]. It is out
of the scope of this paper to compare the influence of various colorings and orderings on the
convergence rate of linear methods. Instead, for a small to moderate number of processors on

Figure 2. Natural order of the initial graph.
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Figure 3. Multicoloring order of the initial graph.

shared-memory parallel computers, some coloring can be performed without modifying the
preconditioner itself. A le6el set structure of the graph will be constructed in such a way that
all vertices in the same le6el can be used at the same time. The efficiency of the proposed
technique depends on the matrix itself, and no effort is done here to modify its structure.
However, for the technique to be interesting, it is assumed that some previous effort was done
to find an ordering of the unknowns suitable for an ILU(0) preconditioner.

The basic idea is to reorder the rows and columns of the coefficient matrix to obtain a block
triangular system in which the diagonal blocks are diagonal matrices. If such a block
partitioning of the matrix is possible, the inverses of the diagonal blocks will be easy to
compute, and a block form of the sequential algorithm can be used. It is clear that the
sequential algorithm is obtained without reordering if the dimension of the diagonal blocks is
one. However, as it was pointed out in [2], the structure of many triangular systems allows a
reordering of the rows into a moderate number of equivalence classes, where the rows in each
class are independent and can be solved in parallel. Figure 4 shows an example of a lower
triangular system where the diagonal blocks Di, i=1, . . . , m are diagonal matrices.

Assume that such non-trivial reordering is possible, and let L1, L2, . . . , Lm (with m5N)
be the equivalence classes defining the partitioning of the rows. The block forward substitution
to solve Lw=v is summarized in Algorithm 2.1.

Figure 4. Block partitioning of a lower triangular system.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 995–1008 (1999)
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Algorithm 2.1
Level set strategy for forward substitution.

For n=1, . . . , m :
Computer in parallel for all i�Ln :
wi= (1/lii)(6i−�jBi, lij"0 lijwj).

End loop n.

The number of levels represents the inherent number of sequential steps in solving the
triangular system. If this number is small compared with the number of rows, the parallelism
in level scheduling should be high.

A similar algorithm can be written for a backward substitution using the matrix U.
The parallel strategy given by algorithm 2.1 can also be applied to compute the incomplete

Gaussian factorization of a general matrix A of order N, where its triangular factors L and U
are restricted to have the same sparsity structure of A. If a level structure L1, L2, . . . , Lm

associated with the graph of the lower triangular part of A is available, the whole process can
be described by Algorithm 2.2.

Algorithm 2.2
Level set strategy for incomplete Gaussian factorization

For n=1, . . . , m, do in parallel Öi�Ln :
For k=1, . . . , i−1 with aik"0 do:

lik=−(aik/akk),
For j=k+1, . . . , N such that aij"0 and ukj"0 do:

aij=aij−lijukj

End loop j.
End loop k.
Rename uij=aij, j]i.

End loop n.

3. LEVEL SCHEDULING METHODS

In this section, a class of reordering method is described that puts the coefficient matrix into
a block form in which the diagonal blocks are diagonal matrices. These reorderings are called
le6el scheduling methods after the way they are represented on the adjacency graph of the
matrix. Important special cases are forward le6el scheduling, in which each row in a lower
triangular system is solved at the earliest possible level, and backward le6el scheduling, in which
each row is solved at the latest possible level.

Reordering the nodes of the graph is equivalent to reordering the rows and columns of the
coefficient matrix. In general, the numerical values of the incomplete factors of A depend on
the order in which computation takes place and thus, a physical reordering of the matrix is
usually performed. For level scheduling methods, this is not necessary because the values of the
coefficients are independent from the order of computation inside each set, provided that the
level structure is respected. Instead, two additional integer vectors help to set up the
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Figure 5. Forward level scheduling of the initial graph.

partitioning from which the set of rows in each level can be obtained. Thus, if the rows of a
matrix are partitioned into m sets, a permutation vector IRENU of length N indicates the order
in which the rows will be processed, and an index vector LEVEL of length m+1 points to the
beginning of each level in IRENU. Therefore, the nth level for 15n5m is made up of the rows
in locations LEVEL(n) to LEVEL(n+1)−1 of IRENU, giving the set Ln used to describe
algorithms 2.1 and 2.2. Hence the row numbers in these locations of IRENU are solved or
factorized in iteration n of the outer loop of these algorithms.

Let E(i ) and F(i ) be two auxiliary sets:

E(i )={ jB i �lij"0}, F(i )={ j\ i �lji"0}.

E(i ) has the indices of non-zero coefficients in the row i, while F(i ) has the respective ones
in the column i.

In forward le6el scheduling each node is assigned to the first level in which it can reside. To
be more precise, let root be an imaginary node linking all the nodes having no predecessors.
In this way, the minimum depth of a node can be defined as the length of the longest path from
the root to that node.

The minimum depth of each node can be computed with one pass through the row structure
of L. For each i such that E(i )=¥, mindep (i )=1. Otherwise,

mindep (i)=1+max
j�E(i)

{mindep ( j)}. (2)

All rows with the same depth are put in the same level set, and the number of levels is
simply:

m=max{mindep (i), i=1, N}.

Once the number of levels and the depth of each row have been determined as above, the
remainder of the scheduling algorithm consists of finding an ordering of the rows by increasing
depth, and setting up an index vector to the start of each new level.

A forward level scheduling applied to the initial graph of Figure 1 gives a graph and a block
triangular lower matrix as in Figure 5.

It is easy to verify in this example that the order of the unknowns respects the direction of
the arrows. This is true in general, so that the ILU(0) factorization is the same as for the initial
ordering. The lower triangular system has the expected blocked form, where the diagonal
blocks are diagonal matrices. In general, the dimension of the diagonal blocks are smaller than
those of a matrix reordered by a coloring technique, needing more communication and
synchronization points in a parallel strategy.

In forward level scheduling, each node is assigned to the level of its minimum depth. The
opposite scheduling strategy would be to assign each node to the level of its maximum depth,
where the maximum depth is the furthest distance from the root that a node may appear in the
graph without increasing the number of levels of the graph. This strategy, called backward le6el
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scheduling, is about the same as forward level scheduling in the parallelism of the triangular
solves. Assume the number of levels in a graph is m. The maximum depth can be defined
recursively with one pass through the row structure of L. For each i such that F(i )=¥,
maxdep(i )=m. Otherwise,

maxdep(i)= min
j�F(i)

{maxdep( j)}−1. (3)

The remainder of the backward scheduling algorithm is the same as for forward scheduling,
i.e. find an ordering of the rows by increasing depth, and set up an index vector to the start
of each new level.

Both of these strategies can be regarded as only two special cases of level scheduling. A node
6i for which mindep (i )Bmaxdep(i ) can appear in any level in the range
[mindep (i ), maxdep(i )], provided that care is taken to ensure that the ancestors of 6i appear
in earlier levels and that the descendants of 6i appear in latter levels. A node satisfying
mindep (i )Bmaxdep(i ) can be considered as a free node, and the difference maxdep(i )−
mindep (i ) is the degree of freedom of the node.

In this work, a simplified implementation of the backward load balancing strategy defined by
Anderson [1], is proposed. The main idea is to make the number of nodes at each level a
multiple of the number of processors by moving the free nodes between levels. First, the
minimum and maximum depths of each node are computed and a linked list of nodes at each
level is set up as for backward level scheduling. Beginning at the last level m, each set of nodes
is analyzed. If for the current set Ln it is possible to take a positive multiple of p nodes with
r nodes left over, the idea is to move to Ln−1 the r nodes with the greatest degrees of freedom.
In principle, if a node 6i is moved from level n to level n−1, all the ancestors of node 6i, which
are in level n−1, need to be moved to a previous level set, and so on. To avoid excessive
swapping, only nodes ha6ing no ancestors in the pre6ious le6el are moved from Ln to Ln−1. If
there is not enough free nodes satisfying this condition, the sets Ln and Ln−1 are unchanged.
In this way, there is only a small overhead between this algorithm and the simple forward and
backward scheduling methods, and hopefully some supplementary parallelism can be recuper-
ated. The proposed algorithm is summarized in algorithm 3.1, where P is the available number
of processors, cS denotes the number of elements of S, and mod(q, p) is the unique integer
r such that 05rBp and (p−r) is a multiple of q.

Algorithm 3.1
Simplified backward load balancing level scheduling strategy

� Build the backward level structure associated with L : L1, L2, . . . , Lm.
� For n=m, m−1, m−2, . . . , 2 such that cLn\P and r=mod(cLn, P)\0 do:

Define Mn={6i�Ln �maxdep(i )\mindep (i ) and 6i has no ancestors in the set Ln−1}.
If cMn]r, move r nodes from Mn to Ln−1 and delete them from Ln.

End loop n.

In the actual implementation of algorithm 3.1, some operations can be omitted. For
example, it is not necessary to build the whole set Mn at each time, but a queue vector can be
used instead. Thus, at most, r nodes are saved at each time, chosen among those having the
highest degrees of freedom. If some of them have ancestors in the previous level, they are
rejected from the queue, and the following equations (ordered by degree of freedom) are taken
into account. The process ends when r equations satisfy both conditions, or when there are no
more equations to be considered.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 995–1008 (1999)
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Figure 6. Load-balancing level scheduling of the initial graph.

Figure 6 shows a numbered graph and its associated lower triangular matrix obtained by the
load balancing level scheduling algorithm applied to the initial graph of Figure 1. Here again
the direction of the arrows in the graph are preserved, and so the ILU(0) factorization
associated with this ordering is the same as for the initial ordering. Assuming that the number
of processors is two, the theoretical speed-up is optimal with this ordering, because each level
set has a number of vertices that is a multiple of the number of processors. In practice,
however, the small size of the level sets penalizes this optimality.

4. NUMERICAL RESULTS

The test cases presented here are not arbitrarily chosen but come from specific CFD
applications. The ILU(0) preconditioner is used in the computation of the steady solution of
the compressible Navier–Stokes equations for subsonic laminar flows. The numerical tests
were performed using FENSAP (Finite Element Navier–Stokes Analysis Package) [9]. This
package, developed bv the CFD Laboratory at Concordia University, solves the compressible
2D and 3D Euler and Navier–Stokes equations in primitive variables form, in Cartesian or
cylindrical co-ordinates. Finite element methods with hexahedra having bilinear shape func-
tions were used for the space discretization. A fixed value of an artificial viscosity coefficient
was used in each case. The system of equations was linearized using the Newton method, and
at each non-linear iteration, the linear system was solved by right-preconditioned GMRES(k)
[10], with k=50 for all the test cases, except for the 2D Cascade, where k=100, and the 2D
NACA0010, where k=75. The relative precision of the final residual in each linear system was
10−6. For the overall non-linear problem, several Newton iterations are necessary to reduce

Table I. Description of the test cases

Re Angle of attackDescription Nodes N NNZ M�

(°)

a b

166 7252D cascade 0.20 100 0 904464 6347
9001000.10180 588695648542D cylinder

901000.01453 163 0876927393D straight pipe
2D NACA0010 24 476 648 940 0.60 2000 0 9016 742
3D concentric annulus 6000 21 392 2 157 000 0.01 100 0 90
3D lid-driven cavity

(i) Grid 24×24×12 8125 26 639 2 502 173 0.01 090100
18 513 6 202 685(ii) Grid 32×32×16 0901000.0163 679

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 995–1008 (1999)
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Table II. Information concerning level scheduling methods

Description N m Ave Eq Max Eq Free Eq Ave DOF

6347 729 8 16 2884 182D cascade
6956 482 142D cylinder 30 6442 24
8769 755 11 333D straight pipe 7853 52

24 476 940 262D NACA0010 46 6382 244
21 392 3352 6 8 964 173D concentric annulus
26 639 588 453D cavity 24×24×12 87 3333 16
63 679 796 79 148 5989 213D cavity 32×32×16

the norm of the residual equations to 10−10. A description of the test cases is presented in
Table I, where ‘Nodes’ is the number of nodes of the discretized domain, ‘N ’ indicates the total
number of unknowns of the system, ‘NNZ’ is the number of non-zero coefficients, ‘Re ’ is the
Reynolds number and ‘M�’ is the Mach number of the uniform flow.

The nunerical tests were run on two shared-memory SGI computers. Most of them were run
on an IRIX 8 CPU Mips R4000, 32 bits, with 64 Kb of data cache size, 256 Kb of secondary
data cache size and 128 Mb of memory. The 3D lid-driven cavity with a grid 32×32×16 was
run on a Power Challenge KL with 4 CPU Mips R8000, 64 bits, with 16 Kb of data cache size,
4 Mb of secondary data cache size and 512 Mb of memory. Computational times are shown
in seconds. When the computations are carried out in parallel, the computational time consists
of the maximum time among processors, including synchronization and communication time.

Some information related to the level scheduling reorderings concerning these test cases is
shown in Table II. The order of the linear system N and the number of levels m are shown.
‘Ave Eq’ indicates the average number of equations by level, while ‘Max Eq’ is the maximum
number of equations in a level; ‘Free Eq’ is the number of equations having a positive degree
of freedom (DOF), and ‘Ave DOF’ indicates the average degrees of freedom of free equations.

The available parallelism depends strongly on the test case, as it can be seen from Table II.
Thus, the 2D NACA0010 is very adequate for this kind of strategy, because of its relatively
small number of levels and a large number of free equations. On the other hand, the 3D
concentric annulus has a very small average number of equations by level, but it is almost
constant. Also, free nodes are concentrated in a small percentage of sets, allowing little
flexibility in modifying the level structure using algorithm 3.1.

A simple model is proposed to predict the behavior of block algorithms for several
processors. The idea is to count the number of steps needed to solve a lower triangular system
put in this form. Thus, for the sequential case, the number of steps is equal to the number of
equations N. For the parallel case, it depends on the number of levels as well as the size of each
one. If the number of equations inside Ln is q, with q=kP+r, the number of steps performed
at level n is k for r=0 and k+1 for 0BrBP. The speed-up can be estimated by the number
of equations over the total number of steps to be performed when using P processors. This
model gives a coarse idea of the parallel behavior of the applied strategy. In particular, the
number of operations inside each row is not taken into account. Nevertheless, finer estimations
are not justified in practice, as it can be seen from the numerical results. The number of
non-zero coefficients by row is small because of sparsity, and the total cost is dominated by the
loop overhead and the synchronization costs.

Theoretical speed-ups using this simple model are shown in Table III. The differences
between forward (or backward) and load balancing level scheduling are not significant in
general. This observation is verified in the total computational time spent by each algorithm.
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Table III. Theoretical speed-up for level scheduling methods

Description Forward Load balancing

Number of processors

2 4 8 16 � 2 4 8 16 �

1.90 3.43 5.71 8.71 8.712D cascade 1.91 3.49 5.75 8.71 8.71
1.94 3.62 6.39 10.15 14.43 1.962D cylinder 3.69 6.47 10.29 14.43
1.92 3.54 6.06 9.23 11.613D straight pipe 1.96 3.67 6.30 9.33 11.61
1.96 3.782D NACA0010 6.93 12.39 26.04 1.96 3.80 7.12 12.30 26.04
1.85 3.32 6.38 6.38 6.383D concentric annulus 1.86 3.32 6.38 6.38 6.38

3D cavity 24×24×12 1.97 3.85 7.40 13.46 45.30 1.99 3.93 7.66 14.13 45.30
1.99 3.97 7.69 14.76 80.00 2.00 3.98 7.81 15.18 80.003D cavity 32×32×16

The expected speed-up for a large number of processors is also shown in Table III. In
general, it is not interesting to use more than a moderate number of processors, say 6–10, but
sometimes the method seems to handle as much as 80 processors. These results are not
validated by the numerical experiments because of the reasons mentioned before, and only a
small number of processors can benefit from this technique.

A summary of results is shown in Table IV. Several Newton iterations were necessary to
reduce the residual norm by 10−10, given by ‘Newton Iterat’. On the other hand, ‘Linear
Iterat’ shows the total number of linear iterations. ‘CPU’ is the total computational time, in
seconds, for the sequential case. It includes not only preparing computations, such as the level
scheduling reordering, but also assembly and factorization steps, repeated at each Newton
iteration. For p processors, p\1, the ratio between the time spent by the sequential run
and the respective one using p processors is shown, to facilitate comparison. For p\1,
the computational time consists of the maximum time among processors, including
communication.

The results presented in Table IV show that, while the parallel strategy used to factorize and
solve the triangular systems is not interesting for a large number of processors, it gives
speed-ups of up to 2.8 for four processors, and 3.9 for eight processors.

Table IV. Computational time using level scheduling recording schemes

LinearNewtonDescription Number of processors

Speed-upIterat Iterat CPU

Forward Load balancing

8428421

2.012D cascade 2.165 390 692. 1.49 1.90 2.17 1.46
2.112D cylinder 2.466 383 728. 1.59 1.95 2.23 1.44

3.992.871.823.922.881.832241.19373D straight pipe
1.82 1.972D NACA0010 6 797 4466. 1.44 1.84 2.01 1.44

3D concentric annulus 9 391 7159. 1.76 2.76 3.56 1.63 2.73 3.68
3D cavity 24×24×12 2.962.662.882.591.62 1.667779.4477

—1.951.794990.121383D cavity 32×32×16 — — —
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Table V. Detail of computational time spent in the linear system solution

2D NACA0010Operations 3D concentric annulus

Number of processors

CPU Speed-up CPU Speed-up

1 2 4 8 1 2 4 8

472. 1.98 3.37 4.00 697. 2.03 3.43 3.93Matvec
1386. 1.58 2.43 2.70Precond 1694. 1.63 2.39 2.58
1343. 1.06 1.03 1.02 348.Others 1.03 1.03 0.99

The causes of the stagnation in the total computational time observed when the number of
processors increases are twofold. First at all, the level scheduling scheme depends on the
original ordering of the equations. If the number of levels is very high, the synchronization
points are numerous, decreasing the efficiency of the parallel strategy. Second, the operations
between vectors coming from BLAS Level 1 (daxpy , ddot , etc.) parallelize very poorly on
shared-memory computers [11]. When the available number of processors increases, the
computational cost of vector–vector operations dominates the total cost of the preconditioned
iterative linear solver, and savings in the time involved in the preconditioning step cannot help
in reducing the total cost of the algorithm. This is illustrated with results in Table V. ‘Matvec’
indicates the time spent during matrix–vector operations, ‘Precond’, during the forward–back-
ward substitution and ‘Others’ states essentially the time spent during vector–vector opera-
tions. In the GMRES method, the last part is mainly the orthonormalization process of the
Krylov basis vectors. The parallel behavior of different operations is similar for both test cases.
For the 2D NACA0010 test case, vector operations are very time consuming during the
solution step. They represent about 42% of the total time spent by the linear solver in a
sequential run. This computational time does not diminish when the number of processors
increases. This partialy explains why the global speed-up in this case is worse than for the 3D
concentric annulus.

At the beginning of this work it was said that it was out of the scope of this research to
compare the influence of different orderings of the unknowns in the global performance of the
ILU(0) factorization. However, this is not a minor point in the global reduction of the
computational time spent in the Navier–Stokes equations using ILU(0) preconditioners. The
robustness and efficiency of the preconditioners is highly depending on the initial order of the
unknowns. A ‘good’ general ordering for these kind of preconditioners does not exists, but it
varies from one test case to another. Thus, before performing intensive computations on a test
case, it is critical to choose an appropriate ordering of the unknowns resulting in a robust
preconditioner. It is unuseful to have a preconditioner scaling very well, but with a very poor
global perforrmance.

To give an idea of the importance of this point, several sequential preconditioners obtained
using different orderings of the unknowns are compared for some of the test cases presented
in this work. For details on the used orderings, see [7]. Also, see [5] for an interesting
comparison of scalable orderings. The orderings used in this comparison are the following:

� orig : Original order of the unknowns, coming with the geometry. Its quality depends
strongly on the effort done during the spatial discretization.
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Figure 7. 2D-cascade: ILU(0) preconditioner with different ordering of unknowns.

� rem : Reverse Cuthill–McKee algorithm [12,13]. Classical algortithm used to minimize the
bandwidth of a matrix.

� mineig : modification of the minimum degree algorithm [14] which reject the new relation-
ships produced by the elimination of a vertex in the structure of the graph associated with
the matrix [15].

� random : The equations are ordered in a random manner.
� color : Greedy multicoloring algorithm [4]. Neighboring equations have different colors.

The multicoloring algorithm parallelizes very well, because the number of colors used is
quite small in all the cases, producing large sets to be processed in parallel. However, the
behavior of ILU(0) using this ordering, as well as the random one, is really poor compared
with rcm or mineig orderings.

Figures 7–9 show the convergence history of the linear system coming from the first Newton
iteration of the 2D cascade, 2D NACA0010 and 3D concentric annulus respectively. The cost
of each iteration is exactly the same for all the orderings used, because the number of non-zero
coefficients is the same for each preconditioner.

As it can be seen, the random and color orderings perform very poorly. They produce less
robust preconditioners, and even if color gives a well-scalable one, the parallel computation
cannot beat the sequential algorithm in these test cases because of the degradation in the
convergence of the preconditioned iterative solver. Therefore, even if the level scheduling
algorithms seem to give a moderate parallelization, they can be very useful to effectively reduce
the total computational time spent in the solution of the linear systems involved here when
coupled with a good sequential preconditioner.

Figure 8. 2D-NACA0010: ILU(0) preconditioner with different ordering of unknowns.
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Figure 9. 3D-concentric annulus: ILU(0) preconditioner with different ordering of unknowns.

As mentioned at the beginning of this section, only one artificial viscosity cycle was done in
each test case. This coefficient was adjusted such that the linear systems were ‘solvable’ when
preconditioning with ILU(0) factorizations. The bigger the artificial viscosity coefficient is, the
better conditioned is the linear system to solve. It is possible to choose a coefficient for which
the ILU(0) factorization obtained with the color ordering performs better than here, allowing
the user to take advantage of the better parallelization behavior associated with it. This can be
useful, for example, in time marching algorithms with small time steps. In the cases presented
here, however, a level scheduling ordering coupled with a performant sequential preconditioner
is a better strategy for reducing the total computational time when using a small number of
processors.

5. CONCLUSIONS

The use of incomplete Gaussian factorization as preconditioner is quite frequent when solving
linear systems coming from CFD computations. because its efficiency and reasonable memory
requirements. For the well-known ILU(0) factorization, the preconditioner is a product of two
sparse triangular matrices L and U, where the sparsity structure of L+U is chosen to be
identical to that of the system matrix. This work presents some results using this precondi-
tioner on commonly available shared-memory computers with a small number of processors
sharing a fairly large aggregate memory. Level scheduling techniques are applied to the parallel
solution of the compressible Navier–Stokes equations. The numerical results show that the
parallel strategy used to factorize and solve the triangular systems, while not useful for a large
number of processors, gives interesting savings in the computational time for a small number
of processors (from 4 to 6).

Since the preconditioner is the same in the sequential and in the parallel case, the solver
keeps all the benefits of a suitable ILU(0) factorization, without the loss of efficiency of a
factorization obtained with a more scalable coloring strategy (as the red–black reordering).
These methods involve some preprocessing overhead and are primarily of interest in solving
many systems with the same coefficient matrix, as in an iterative procedure with ILU
preconditioning, or with several different matrices all having the same structure. Both of these
conditions are verified in the test cases considered here, and the preprocessing overhead
becomes negligible in practice. The implementation of the level scheduling ordering is quite
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simple, and the additional memory requirements is only a couple of integer vectors of
maximum length N for each triangular system to solve.
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